Extensions 1→N→G→Q→1 with N=C22 and Q=C2×C9⋊S3

Direct product G=N×Q with N=C22 and Q=C2×C9⋊S3
dρLabelID
C23×C9⋊S3216C2^3xC9:S3432,560

Semidirect products G=N:Q with N=C22 and Q=C2×C9⋊S3
extensionφ:Q→Aut NdρLabelID
C221(C2×C9⋊S3) = C2×C9⋊S4φ: C2×C9⋊S3/C18S3 ⊆ Aut C22546+C2^2:1(C2xC9:S3)432,536
C222(C2×C9⋊S3) = C2×C32.3S4φ: C2×C9⋊S3/C3×C6S3 ⊆ Aut C2254C2^2:2(C2xC9:S3)432,537
C223(C2×C9⋊S3) = D4×C9⋊S3φ: C2×C9⋊S3/C9⋊S3C2 ⊆ Aut C22108C2^2:3(C2xC9:S3)432,388
C224(C2×C9⋊S3) = C2×C6.D18φ: C2×C9⋊S3/C3×C18C2 ⊆ Aut C22216C2^2:4(C2xC9:S3)432,397

Non-split extensions G=N.Q with N=C22 and Q=C2×C9⋊S3
extensionφ:Q→Aut NdρLabelID
C22.1(C2×C9⋊S3) = C36.27D6φ: C2×C9⋊S3/C9⋊S3C2 ⊆ Aut C22216C2^2.1(C2xC9:S3)432,389
C22.2(C2×C9⋊S3) = C36.70D6φ: C2×C9⋊S3/C3×C18C2 ⊆ Aut C22216C2^2.2(C2xC9:S3)432,383
C22.3(C2×C9⋊S3) = C4×C9⋊Dic3central extension (φ=1)432C2^2.3(C2xC9:S3)432,180
C22.4(C2×C9⋊S3) = C6.Dic18central extension (φ=1)432C2^2.4(C2xC9:S3)432,181
C22.5(C2×C9⋊S3) = C36⋊Dic3central extension (φ=1)432C2^2.5(C2xC9:S3)432,182
C22.6(C2×C9⋊S3) = C6.11D36central extension (φ=1)216C2^2.6(C2xC9:S3)432,183
C22.7(C2×C9⋊S3) = C62.127D6central extension (φ=1)216C2^2.7(C2xC9:S3)432,198
C22.8(C2×C9⋊S3) = C2×C12.D9central extension (φ=1)432C2^2.8(C2xC9:S3)432,380
C22.9(C2×C9⋊S3) = C2×C4×C9⋊S3central extension (φ=1)216C2^2.9(C2xC9:S3)432,381
C22.10(C2×C9⋊S3) = C2×C36⋊S3central extension (φ=1)216C2^2.10(C2xC9:S3)432,382
C22.11(C2×C9⋊S3) = C22×C9⋊Dic3central extension (φ=1)432C2^2.11(C2xC9:S3)432,396

׿
×
𝔽