Extensions 1→N→G→Q→1 with N=C22 and Q=C2xC9:S3

Direct product G=NxQ with N=C22 and Q=C2xC9:S3
dρLabelID
C23xC9:S3216C2^3xC9:S3432,560

Semidirect products G=N:Q with N=C22 and Q=C2xC9:S3
extensionφ:Q→Aut NdρLabelID
C22:1(C2xC9:S3) = C2xC9:S4φ: C2xC9:S3/C18S3 ⊆ Aut C22546+C2^2:1(C2xC9:S3)432,536
C22:2(C2xC9:S3) = C2xC32.3S4φ: C2xC9:S3/C3xC6S3 ⊆ Aut C2254C2^2:2(C2xC9:S3)432,537
C22:3(C2xC9:S3) = D4xC9:S3φ: C2xC9:S3/C9:S3C2 ⊆ Aut C22108C2^2:3(C2xC9:S3)432,388
C22:4(C2xC9:S3) = C2xC6.D18φ: C2xC9:S3/C3xC18C2 ⊆ Aut C22216C2^2:4(C2xC9:S3)432,397

Non-split extensions G=N.Q with N=C22 and Q=C2xC9:S3
extensionφ:Q→Aut NdρLabelID
C22.1(C2xC9:S3) = C36.27D6φ: C2xC9:S3/C9:S3C2 ⊆ Aut C22216C2^2.1(C2xC9:S3)432,389
C22.2(C2xC9:S3) = C36.70D6φ: C2xC9:S3/C3xC18C2 ⊆ Aut C22216C2^2.2(C2xC9:S3)432,383
C22.3(C2xC9:S3) = C4xC9:Dic3central extension (φ=1)432C2^2.3(C2xC9:S3)432,180
C22.4(C2xC9:S3) = C6.Dic18central extension (φ=1)432C2^2.4(C2xC9:S3)432,181
C22.5(C2xC9:S3) = C36:Dic3central extension (φ=1)432C2^2.5(C2xC9:S3)432,182
C22.6(C2xC9:S3) = C6.11D36central extension (φ=1)216C2^2.6(C2xC9:S3)432,183
C22.7(C2xC9:S3) = C62.127D6central extension (φ=1)216C2^2.7(C2xC9:S3)432,198
C22.8(C2xC9:S3) = C2xC12.D9central extension (φ=1)432C2^2.8(C2xC9:S3)432,380
C22.9(C2xC9:S3) = C2xC4xC9:S3central extension (φ=1)216C2^2.9(C2xC9:S3)432,381
C22.10(C2xC9:S3) = C2xC36:S3central extension (φ=1)216C2^2.10(C2xC9:S3)432,382
C22.11(C2xC9:S3) = C22xC9:Dic3central extension (φ=1)432C2^2.11(C2xC9:S3)432,396

׿
x
:
Z
F
o
wr
Q
<